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ABSTRACT

The problem considered is the following. The parameters X IL

are to be so chosen that the differential equation

2
d w+ { X + pf(z) + g(z) I w = 0
dz2

should have a non-trivial solution satisfying three boundary conditions

of the type w(a) =w(b) =w(c) = 0.

Formal properties of solutions (orthogonality, eigenfunction

expansions) are established, and some results obtained on the real

character of the eigenvalues. Two integral relations are given, leading

to a reduction of the original problem to a one-parameter problem involving

a non-linear integral equation.



TWO-PARAMETER EIGENVALUE PROBLEMS IN DIFFERENTIAL EQUATIONS

Felix M. Arscott

1. Introduction

In this paper a number of inter-related eigenvalue problems are

discussed, the common feature being that each involves an ordinary linear

homogeneous differential equation, containing two parameters whose values

have to be so chosen that the solution will satisfy three boundary conditions.

The typical problem is the following:

In the equation

d~w
d + {X + f(z) + g(z)) w =0 (1.1)2dz

the functions f( z), g(z) are given, and constants a, c are alsu given.

It is required to find values of X, R such that the equation may possess a

solution w( z), not identically zero, satisfying the boundary conditions

w(a)=w(b) =w(c) =0 . (1.2)

The treatment of the problem in this paper will be formal only, in the

sense that the question of existence of solutions in general will not be discussed.

Sponsored by the Mathematics Research Center, U. S. Army, Madison, Wisconsin,
under Contract No. DA- 11-022-ORD-2059.
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This is for two reasons (i) the difficulties involved in establishing existence-

theorems appear to be quite formidable, and it seems likely that in order to

obtain proofs of such theorems, use will be made of some of the formal

properties which will be given here, in particular the connection with

certain one-parameter problems in partial differential equations or integral

equations (ii) there are several special, non-trivial, examples of problems

of the general type considered (or reducible to that type) in which it is

known that solutions exist, and a general theory would be of value even

if it were found to cover only these.

There are some variants of the main problem which may be noted

here.

(a) Any or all of the conditions (1. 2) are replaced by the condition

that w'(z) should vanish at the corresponding point. The results

proved for the main problem in this paper apply with only minor

modifications to this case also.

(b) The functions f(z), g(z) are periodic functions with period P,

and two of the boundary conditions are replaced by a single

periodic condition w( z + P) -m w( z).

(c) The functions f(z), g(z) are doubly-periodic, with independent

periods P, P' , and the three boundary conditions are replaced by

a single condition of double-periodicity, w( z + P) a w( z + P') a w( z).



#350 -3-

It seems that both (b) and (c) may, in general, need special

consideration, but in many of the known cases (Mathieu's and Hill's

equations, Lam4's equation and the ellipsoidal wave equation) it is

possible to reduce, by a special artifice, the problem to one of the main

type or type (a).

Some classical examples should be mentioned here, mainly because

of the suggestive illustrations they provide of the various possibilities which

may occur.

(A) The problem of the vibrating uniform elliptic membrane (which

stimulated the original interest in differential equations with

periodic coefficients) gives rise to four two-parameter eigen-

value problems of the form (1. 1) with f( z) = cos 2z, g( z) = 0,

1
a =0, b =-,, c =ia, where a is real and given by

-1
cosh a = e , e being the eccentricity of the elliptic boundary.

In the four problems, we may require w or w' to vanish at 0
1

and n n . An equivalent formulation is to require that w(z)

have period 2n and vanish at z = ia (4, §4.31).

(B) In the separation of the wave equation in general paraboloidal

coordinates we have a problem of the above nature with

f(z) =cos 2z, g(z) =w cos 4z, (w being a constant
1

depending on the wave number), a = 0, b = Zr, and

the third boundary condition being either (6)

1
lim w(iu) = 0 or lim w(-I+iu) = 0.

U -* o U -.000
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(C) Separation of Laplace's equation in ellipsoidal coordinates gives
2

the Lam6 problem in which f(z) = sn z, g(z) = 0, a = 0, b = K,

c = K + iK , in the usual elliptic-function notation.

(D) Similar separation of the wave equation gives the same problem
4

with g(z) = w sn z, w again being a constant depending on

the wave number (3).
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2. Reduction to a one-parameter problem in partial differential equations

One method of reducing the original problem to a two-parameter

problem is the following.

Let W(a, ) = w(a)w(p) . (2.1)

Then from (1.1),

a + { X + f(a) + g(a) }W 0,
8a2

a + { + 11f(P) + g(P) } W = 0,aP2

hence by subtraction,

2 2

2+ [ {f(a) - f(P)) + g(a) -g(p)] W =0, (2. 2a)

and the boundary conditions become

W(a, p) =0 (2.2b)

whenever a or P has any of the three values a, b c.

In the problem posed by (2. 2), the parameter X has been eliminated

and only I is involved. This reduction to a one-parameter problem has been

achieved, however, at the cost of replacing the original ordinary differential

equation by a partial differential equation. Another obstacle to be overcome
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should also be noted. A function W(a, p) satisfying (2. Za, b) is not

necessarily of the "separable" form w(a)w(P) , and so does not

automatically yield a solution of the original problem.

This approach has proved useful in problems (C) and (D)

mentioned above. In the former, problem ( 2. 2) has a denumerably-

infinite set of eigenvalues in (n = 0, 1, 2, ... ), such that for = n

there are (n + 1) linearly independent solutions Wn, m(a, P) ,

(m - 0 to n), and precisely (n + 1) linear combinations of these

which are of separable form. In problem (D) , however, each of the

eigenvalues In yields only a single solution which is already separable (7).
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3. Orthogonality properties

z2

Let f dz denote contour integration along a path in the complex
z
1

z-plane Joining zI and z2 and not passing through any singularity of the

differential equation (1. 1). There may, of course, be more than one suchz 
2

path, but wherever the symbol f dz occurs, it is presumed to refer to
zI

the same path.

If in (1. 1) is regarded as fixed, the problem reduces to a one-

parameter eigenvalue problem, and we have immediately the usual orthogonality

property which we shall here call ordinary orthogonality, namely:

Let w1(z) , w2 (z) be solutions of (1. 1) and (1. 2) for the same

A but different values X 1 X . respectively of X. Then

b c c
f wIw 2dz f wIw 2dz = f w 1 w 2 dz = 0 . (3.1)
a a b

This is proved in the usual manner; we write down the differential equations

satisfied by Wi, w2 , multiply by w2 , w, respectively and subtract, then

integrating by parts gives

z 2 z( h - X 2  ." l~ dz w[ W .W, w W ] z , (3. 2)

z1

and the right hand side vanishes if (zI, z2 ) = (a, b) or (a, c) or (b, c)
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on account of the boundary conditions, so the result follows.

In general, one cannot assert that the integral

z 2f w 1) d- (3.3)

z 
1

is non-zero, since we are not excluding complex values of z. If, however,

the following two conditions are fulfilled

(i) the path of integration is parallel to either the real or the

imaginary axis,

(ii) on the path, w(z) is either real or a pure imaginary throughout,

then clearly

zf {wl 2 dz *0 (3.4)

zI

These conditions - which are sufficient but clearly not necessary - cover the

applications in problems (A) - (D) above.

Solutions of (1. 1) associated with different values of j. and/or X

satisfy a wider orthogonal relation which, in order to distinguish it from the

ordinary orthogonality of ( 3. 1), we shall call double orthogonality.

Let v( z), v 2 ( z) be solutions for different X and/or 1L, i.e.

(XI,"I) and (X 2,,. 2 ) with XI# X 2 or L1 *.L2 orboth. Let (alpa 2 )

and (1' 13) denote different members of the value-pairs (a, b), (a, c),

(b, c). Then
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a 2 P2

f f v,(a)v,(3)vE(a)v 2 (p) {f(a) -f(P)} dad 3 = 0 (3.5)
ai

Proof
Let

Vi(a, P) vi(a)vi(P), (iI, 2.). (3.6)

Then by the same reasoning which gave (2. 2a)

a 2V I  a vI
+ [l{f (a) " f(P) ) + g(a) - giA) I V1i0 , 0) 0 0,Ba2 8p2

with a similar equation for V2 (a, P) . Multiplying these by V2 , V1

respectively and subtracting gives

a2 V1  2 I2 2 z a

V2 {2- -802 -V I{ 2 ) + (Ll - ){f(a) - f(P) VIV2 =0

Now integrate over the ranges (al, a2 ), (I, P%) ; integration by parts with

respect to a or P gives

a2  P2

G 1 2 ) f f (f(a) - f( )}VIV2 dad =

2 8V OV a 2  a2 V OVI 2
f [ v j V " + f [V1 2 - V] l da . (3.7)
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But by the boundary conditions, each [] term will vanish; consequently

if 1 0 2 the integral on the left hand side must vanish.

To extend to the case when X* = X # 2' we write the left

sideof (3.5) as

aZ p2

f f(a)v (a)v (a)da f vl(P)vz(P)d-
al1

P2 a 2
- f f(P)v 1 (P)v 2 (P) f vl(a)v2 (a)da (3.8)

Then the second and third integrals in this expression both vanish, so (3. 5)

holds when 1 = 2' X I * X 2' and the result is established.

Again, it should be noted that if v1 = v 2 , the integral in (3.5) is

not necessarily non-zero. However, if

(i) both paths of integration are parallel to either the real or

the imaginary axis,

(ii) v1(a) is either real or a pure imaginary on the path (al a 2 )

and vI(P) is either real or pure imaginary on (P' P2) 1

(iii) f(a), f(P) are real and f(a) - f(P) is of one sign when

a lies in (a1 , a 2 ) and P lies in ( 1, P2 ) '

then the integral
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a 2 P2

Pf V v{f(f) f( ) } da dP # 0. (3.9)

The conditions (i) - (iii) are satisfied in the problems (A) - (D) mentioned

above.

Two further observations should be made at this point. First, if

(a, a 2 ) and (P1 P2 ) denote the same path, then (3.5) is still true

but is trivial, as may be seen by writing it in the form (3. 8) . In this

case the integral in (3. 9) vanishes in all circumstances.

Secondly, the results of this section still apply if any of the

conditions w(a) = 0, etc. is replaced by w'(a) = 0, as is immediately

obvious from (3.2) and (3.7).
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4. Eigenfunction - expansions

From the orthogonality theorems given in §3 there follow immediately

two formal eigenf unction expansion theorems. In the case when the eigenvalues

are discrete, let us denote the eigenvalue-pairs by

= ( (J = 0, 1, 2, .. )(4.1la)

X = k (j = 0, 1, 2, ... ) , (4. Ib)

and the corresponding eigenfunctions by

w = wij(z) . (4. ic)

The index i can generally be expected to run through the values 0 to infinity;

for the index j , however, there are various possibilities. It may be (as in

problem (A)) that j also varies from 0 to infinity; it may be (as in problems

(B), (C)) that j runs only through a finite number of values (depending on i),

or in the extreme case (as in problem (D)) there is only a single j corresponding

to each i.

Then the formal expansion theorems are

I. If a function F(z) is expressible as a single series

F(z) = ; a1 w i(z) (4.2)
i

(the summation being over all admissible values of J) , then there follows
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immediately from (3.1) the formal relation

aj f{wij(z) }2dz = F(z)wij(z)dz , (4.3)

where integration is over any of the three paths (a, b), (a, c), (b, c)

This formula will, naturally, only determine the coefficients a,

if the integsqtion processes are valid and the integral on the left is non-zero;

conditions for the latter were discussed in §3 above.

II. If a function F(a, p) is expressible as a double series

F(a, )= ZAij wij (a)w ij , (4.4)
ij

then from (3. 5) we have similarly

Aij ff{wij(a)wi,(P)} 2 {f(a) - f(P)) da d -

ffF(r, P)wij(a)wij(P){f(a) - f(P) } dadp , (4.5)

where integration is over any two of the three paths (a, b), (a, c), (b, c)

Again, the usefulness of this is subject not only to the ex stence of the

expansion but also to the validity of the integration processes and the non-

vanishing of the left hand integral.

In general, one can expect (in a given problem) the class of functions

for which an expansion of type II holds to be considerably wider than the
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corresponding class for expansions of type I. For instance, in problem (C),

an expansion of type I is possible only if F(z) is effectively a polynomial

of fixed degree (but otherwise arbitrary) while an expansion of type II is

possible provided only that a certain simple transformation to new variables 0,

say F(a, p) 0 G( 0, +) is such that the resulting function G( 0, +) can be

expressed as a double series of spherical harmonics. In some problems,

however, the class of functions possessing a type - I expansion is still

wide - e. g. in problem (A) it coincides with the class of functions F(z)

expressible as Fourier series.

One may conjecture that in the case of a "spectrum" continuous in

X or R or both, analogous expressions may be possible using integral

formulae in place of single or double series.
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5. Real character of the eigenvalues

The orthogonality relations of §3 can be used to prove that under

certain conditions the eigenvalues of X , k are all real.

Theorem

Denote by u(z, X, IL) a solution of (1.1) such that u(a, X, L) =0,

and by (al, a 2 ), (p1, P2 ) differentvalue-pairsof (a, b), (a, c), (b, c)

Let (i) paths (a 1, a 2 ), P 2 ) exist which are parallel to

either the real or the imaginary axis and which do not

pass through any singularity of the equation (1.1)

(ii) u(z, X, ) be either real or a pure imaginary on

(alp a2 ) and (P1, P?)

(iii) f(a) - f(P) be real and of one sign for a lying on

(al, a 2 ) and P lying on (P,, P2 ) "

Then the eigenvalues of the problem (1. 1), (1. 2) are all real.

Proof

The elgenvalues X, L are determined by the two equations

u(b, , IL) = u(c, X, IL) =0 (5.1)

and by conditions (i) , these imply

u(h, X~ I I u(c, XIL 0. (5.2)
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Hence if b0  be a complex eigenvalue-pair with an associated solution

u0 ( z), X0, 0 will be another eigenvalue pair with associated solution

u0(z) . Then by the same reasoning as that which gave (3.7), with

= 0' 2 = 0' V =u O- v2 =u O, we obtain

a2 P2

(RO 0 f f {f(a) - f( w)}uo(a)Uo(p) Uo(a) Uo(P) dadp = 0. (5.3)
al I

But the integrand is real and of one sign, so the integral is either real or a

pure imaginary, and not zero; hence R0 - 0 = 0, and L0 is real.

Further, X0 and TO are now eigenvalues belonging to the same'

value of , so by applying a similar argument to the first integral relation

(3.2) we prove that X O - =0, so X 0 is also real.

Corollary

If a,b,c are real with a<b<c, f(z), g(z) are real for

a < z <c, and f(z) is monotone for a < z <c, and the equation has

no singularities in a < z < c, then the eigenvalues are real.

For the conditions of the theorem are clearly all fulfilled in this

case.
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6. Integral relations and integral equations

In this section we give two integral relationships, from which can

be derived integral equations satisfied by the solutions of (1. 1), (1. 2).

The first of these is similar to the familiar integral equations for one-

parameter eigenvalue problems, but the second is a non-linear equation

of a rather unusual type.

Theorem I (First integral theorem)

Let (1) w(z) be a solution of w" + {X + f(z) + g(z)}w = 0 , (6.1)

(ii) G(z, z') be a solution of the partial differential equation

82G 82G
a G 8 G ~+ [I{f(z) - f(z') ) +g(z) - g(z')]G =0, (6. 2)

Oz2  ez,
2

such that G(z, z') is analytic when z, z' lie in certain

regions R, RI of the complex z, z' -planes respectively.

(iii) C be a path in the z' -plane, lying wholly within R' and

such that

dw(z') 8G(z. z)(a) [ G(z, z) dz' 8z )

has the same value at the two ends of C,

(p) f G(z, z') w(z')dz t exists for all z in R, and
C

if the integral is singular, it converges uniformly

with respect to z for all z in R.
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Then

W(z) f fG(z, z')w(z') dzt (6.3)
C

satisfies (6.1) for all z in R.

Proof

By conditions (iii) differentiation of W( z) under the integral sign

is permissible, so

d W + x~ + fgz) + g(z) ) W= f G + {X +ILf (z) + g(z)})G] w(z') dz -

dz 2  C 8Z

2
=f 2L + { X + jf(zt) + g(zt) ) G] w(zl)dzt , (using (11))
C 8z'

!- [w(z') - G(z, z,) dwz j

C

(on integrating the product w( z:)8 2GI8z' 2twice by parts),

= 0 ,

since the integrated term vanishes because of (iii) (ai) and the integral

because of (i) . This proves the theorem.

Corollary (First Integral equation)

Let w( z),. w *( z) be a pair of independent solutions of ( 6. 1) , such

that w( z) can be characterized by possessing a certain property P, and
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w *(z) by possessing another property P but a combination of w, w

possesses neither property P nor P

Then if (i) G(z, z') , as a function of z, has property P,

(ii) the function W(z) defined by (6. 3) is not

identically zero,

then w(z) satisfies the integral equation

w(z) = 0 fG(z, z')w(z')dz. (6.4)
C

The proof of this is immediate when we remark that W(z), being a

solution of (6.1) must be of the form W(z) = cw(z) + c w *(z), where

c, c are not both zero, and condition (i) implies c = 0.

Some observations must be made at this point regarding both the

theorem and the corollary.

First, we have not imposed any boundary conditions on w(z) or

on G(z, z'). If we do add to w(z), however, the restriction of satisfying

the boundary conditions w(a) = w(b) = 0, and to G the conditions

G(z, a) = G(z, b) = 0, and we take the path C as a suitable path

joining z = a to z = b, then this ensures that the integrated term

does indeed vanish - I.e. condition (III) (a) of the theorem is

satisfied. A similar remark holds for a path joining z = a to z = c or

z=b to z=c.

Secondly, the theorem can be used, in certain circumstances, to

derive an expression for the second solution of the differential equation
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(6.1) in terms of the first solution. In the case of Mathieu's and Lam6 Is

equations, for instance, this provides a very fruitful source of information

about the second solution and its properties ( 2), (4, § 2. 6).

Thirdly, it should be noted that we have not yet suceeded in making

a genuine reduction in the number of parameters involved in the problem.

For the partial differential equation (6. 2) which must be satisfied by G

still contains the parameter I. , so that in general G itself will contain

p., while the parameter X has been replaced in the integral equation ( 6. 4)

by a new unknown parameter 0.

Theorem II (Second integral theorem)

Let (i) w(z) be a solution of (6.1),

(ii) H(a, I, y) be a solution of the partial differential equation

{f(P) -f(y)} !2H+ {f() -f(a)}L +{f(a) f(p)} =

=[g(a){f(P) -f(y)} +g(P){f(y) -f(a) } +g(y) {f(a) -f(P)}]H, (6. 5)

such that H(a, P, y) is analytic when a, P, y lie in regions R, , R of the
Y

complex a-, P-, y-planes respectively,

(III) C C be paths in R, R such that

BHB aw)-H(,,y)w(] 0 ' 6.a
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[2 W(P) - H(a, 3, Y) w'(M) =0, (6. 6b)

(iv) W(Y) = f f {f(a) - f(P))H(a, P, y) w(r) w(P) da d (6.7)
C aC P

exists, and if singular converges uniformly with respect to y when a, P, y

lie in R , y, R.

Then W(z) is a solution of (6.1).

Proof

Differentiation under the integral sign is valid by (iv), so

W(y) = ff(f(a) - f(P)} - 2H w(a) w(P) da dc ,
ey2

hence

W"(y) +{X + Rf(Y) +g(Y)) W=

fff(a) - f(P) [H +k Rf(y) + g(y) )H] w(a) w(p) dad1. (6.8)
ey2

Now we use (6. 5) to rearrange the integrand in (6.8) as

[{f(y) -f(P)2 N fca) Hy ) - H - F(ak, 3, y) +

wa 2 8 2

+ + IL f (y) + g(y)) f(a) - f (P) )H(a, P, y) ] w(a) w(P) , (6.9)

where F(a, P, ) denotes the expression on the right hand side of (6. 5) .
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We now substitute (6.9) in (6.8), integrate the first term twice by parts

with respect to a, and the second twice with respect to P; by (6.6a, b),

the integrated terms vanish. Then we have

W"(y) + { X +ILf(Y) +g(Y)} W-

= ff{f(y) - f(P)} {w"(a ) + g(a) w(a)} w(P) H(a, 0, y) da dp +

+ ff f (a) f f(y)} w"(P) + g(P) w(P) }w(a) H(a, PO y) dadci +

+ff{X +i f(y))(f(a) -f(P) }w(a) w(P) H(a, P, y) da d. (6.10)

Using, finally, the fact that w( z) is a solution of (6. 1) so that

w"(a) + g(a) w(a) = - {. + f(c)} w(r)

etc., the right hand side of (6.10) reduces to

ff[ {f(P) - f(Y)) X + Lf(a)) + (f(Y) - f(a)) } X + if(P)) +

+ {f(() - f(P)} {X + Lf(y)} ] w(a)w(P ) H(a, , y)da d

= 0 ( since the expression in [ ] vanishes identically).

This proves the theorem. With the notation of Theorem I corollary, and

using the same method of proof, we can add the corresponding corollary

here
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Corollary (Second integral equation)

Let H(a, P, y), as a function of y, have property P, and let

the integral defining W(y) in (6. 7) be not identically zero. Then w(z)

satisfies the integral equation

w(y) =f f {f(a) - f(p)} H(a, P, y) w(a) w(p) dad . (6.11)
Ca CP

Again, it should be observed that no boundary conditions have been

applied to w(z). If we take CaI C as suitable paths joining (alI ad

and (P1, P2) , where (al' a) (P1' P2) are different pairs of values from

the three sets (a, b), (a, c), (b, c), then by imposing on w(z) the

boundary conditions (1. 2) and on H(a, P, y) the conditions

H(a 1 , P, y) = H(a?, P, y) = H(a, Il, y) = H(a, P2' Y) = 0 , we ensure that

the conditions (6. 6a, b) for the vanishing of the "integrated terms" are

satisfied.

It should be observed that we have here made a genuine reduction of

our original problem to a one-parameter problem, for the partial differential

equation (6. 5) to be satisfied by the nucleus H(a, P, y) is now completely

independent of both X and p, so that the only remaining parameter is the

+ of the integral equation (6. 11). It is noteworthy that because of the

non-linearity of (6. 11), the value of + depends on the rtormalisation

of w(z).

Integral equations of type (6. 11) have been considered by Schmidt

in (5).
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This integral relation has been of considerable utility in dealing with

problems (C) and (D) ; in these two problems the equation (6. 5) is merely

a transformation, respectively, of Laplace's equation and the wave equation in

three dimensions. Among the applications made are (i) the obtaining of

perturbation solutions for the low-frequency case of (D), (ii) finding the

asymptotic behaviour of solutions w(y) for high frequencies or in certain

regions of the y -plane (both these applications were made by Malurkar in

[ 3] ) and (iii) expressions for the second solution of Lam& Is equation in

terms of Lam6 polynomials [ 2]. A detailed study of the nuclei of an integral

equation of type (6. 11) for the problem (D) is in [1].
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